This page generates a table of non-zero values for Dirichlet characters modulo k.
n | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 23 |
---|---|---|---|---|---|---|---|---|
X1(n) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
X2(n) | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 |
X3(n) | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 |
X4(n) | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 |
X5(n) | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
X6(n) | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 |
X7(n) | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 |
X8(n) | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 |
X(n) mod 24 ------------------------------ n 1 5 7 11 13 17 19 23 ------------------------------ X_1(n) 1 1 1 1 1 1 1 1 X_2(n) 1 -1 1 -1 1 -1 1 -1 X_3(n) 1 1 -1 -1 1 1 -1 -1 X_4(n) 1 -1 -1 1 1 -1 -1 1 X_5(n) 1 1 1 1 -1 -1 -1 -1 X_6(n) 1 -1 1 -1 -1 1 -1 1 X_7(n) 1 1 -1 -1 -1 -1 1 1 X_8(n) 1 -1 -1 1 -1 1 1 -1 ------------------------------
$\chi(n)\pmod{24}$ \\ \begin{tabular}{c c c c c c c c c } \hline $n$ & $1$ & $5$ & $7$ & $11$ & $13$ & $17$ & $19$ & $23$ \\ \hline $\chi_1(n)$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ \\ $\chi_2(n)$ & $1$ & $-1$ & $1$ & $-1$ & $1$ & $-1$ & $1$ & $-1$ \\ $\chi_3(n)$ & $1$ & $1$ & $-1$ & $-1$ & $1$ & $1$ & $-1$ & $-1$ \\ $\chi_4(n)$ & $1$ & $-1$ & $-1$ & $1$ & $1$ & $-1$ & $-1$ & $1$ \\ $\chi_5(n)$ & $1$ & $1$ & $1$ & $1$ & $-1$ & $-1$ & $-1$ & $-1$ \\ $\chi_6(n)$ & $1$ & $-1$ & $1$ & $-1$ & $-1$ & $1$ & $-1$ & $1$ \\ $\chi_7(n)$ & $1$ & $1$ & $-1$ & $-1$ & $-1$ & $-1$ & $1$ & $1$ \\ $\chi_8(n)$ & $1$ & $-1$ & $-1$ & $1$ & $-1$ & $1$ & $1$ & $-1$ \\ \hline \end{tabular}
Use the results from this page at your own risk. Note that ordering of the rows is arbitrary except the first. Other tables may have the rows in a different order.
David A. Ireland, A Dirichlet character table generator, D.I. Management Services Pty Ltd, <https://www.di-mgt.com.au/dirichlet-character-generator.html>, {date accessed}.
The code behind this page was written in Perl by David Ireland. Last updated 23 January 2019.
Copyright © 2010-19 DI Management Services Pty Limited
ABN 78 083 210 584
Australia.
www.di-mgt.com.au.
All rights reserved.