Three public modulus values, 512 bits each... n1=a9c737dd808d02866fbf1acf05de2eb124137007a4965ec4dcbfa6d02f97e0123a8fd3691e414 a1382f38ab39b09975705eceaf1131a283c937b309f1c1417f9 n2=b7e9e114a08adff12f762d7f0e1f16202e1eb7a7f2852369bdf44865783d19111e6d61b31de98 7bcb9775099e220a798d4f99cd3e5f04c64f87a35c0268a83e9 n3=c2bdbd4e36ba20d37d5d1e968f09f2fc7b41a97f3052274e4892d50d5fb337c923048aed7d393 135ee55711e5c74975867f13d3845bac9588b4be170d08bab57 e=3 Message to be encrypted... m=2ffffffffffffffffffffffffffffffffffffffffff0000deadbeefcafe Three ciphertexts... c1=4dadb8068a56e87fda9388b6e6975b0118d9b285e26546d15edbb4ab94265ea49dabe85925ff9 f6dc3d0d6975f3a84f7db91d23da35152ebeb2c2e94d3467adb c2=2113c0493defdaaaece30e43943fa8734e45378d35ee7e1efd917c846d30bf2efb630e3bc0752 706df31ac94f7ec20fef1456819eae8e8fbe0d9e747faa259b9 c3=697e6f45ff2f845976640c73705dfeca79f9ba637931caa32f38fcb68015d5414a357dbea8519 0cfa5887196512d6c19407ee4f8430df467dd89b367227658a7 gcd(n1,n2)=1 gcd(n2,n3)=1 gcd(n3,n1)=1 Computed value of x = c_1 N_1 d_1 + c_2 N_2 d_2 + c_3 N_3 d_3 (mod N)... x=1affffffffffffffffffffffffffffffffffffffffe500177c53234a68ca000000000000000000 00000008fff057cf6263efd3971f5f0729087423ffffffffff00029c06f7baa23b1dc0c685f44bea cf1668948b646783f8 m'=cuberoot(x)=2ffffffffffffffffffffffffffffffffffffffffff0000deadbeefcafe HOORAY! We have found the correct answer, m' = m.